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A generalization of the Beltrami stress functions

in continuum mechanics 1

by

M. E. Gurtin

Brown riUniversity

1. Introduction.

In the absence of body-forces the stress equations of

equilibrium for a continuous medium take the form

Skm,m = 0 ak =mk (1.1)

when referred to rectangular cartesian coordinates. 2  Apparently

the first stress-function solution of (1.1) was Airy's [1863]

two-dimensional solution in terms of a single stress function.

Three dimensional generalizations of Airy's stress function

were obtained by Maxwell [1870] and Morera (1892], who established

two alternative solutions of the stress equations of equilibrium,

each involving a triplet of stress functions. Beltrami [1892]

observed that the solutions due ts Maxwell and Morera may be

regarded as special cases of a solution to (1.1) which may be

written as

1
The results communicated in this paper were obtained in the
course of an investigation conducted under Contract Nonr-
562(25) of Brown University with the Office of Naval Research.

2 Here as well as in the sequel we use the usual indicial nota9.
tion. Thus, Latin subscripts have the range of the integers
(1,2,3) and summation over repeated subscripts is implied;
subscripts preceded by a comma indicate differentiation with
respect to the corresponding cartesian coordinate. Further,
C jk and b., respectively denote the alternating symbol and

Kronecker's delta.
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'km = "kip'mjqCijpq I "iJ " -Ji " (L.2)3

Equation (1.2) degenerates into Maxwell's solution if one takes

•J -= 0 (i/J); it reduces to Morera's solution if cne sets

cpi = 0 (no sum), and it yields Airy's solution if one assumes

that all of the yiJ" except T33J vanish.

Completeness proofs for Beltrami's solution were given

by Morinaga and Nono [1950], Ornstein [1954], G•nther [19541,

and Dorn and Schild [19561. All of these proofs, however, are

valid only when the boundary of the region under consideration

consists of a single closed surface. This fact was noted by

Rieder [1960), who showed that the representation (1.2) is

incomplete. In fact, as shown by Rieder, (1.2) can at most

represent solutions of (1.1) which are "totally self-equilibrated"

in the sense that they correspond to zero resultant force and

moment on every closed surface contained In the region. It is

at once clear that solutions which are not totally self-equili-

brated do indeed exist whenever the boundary of the region

consists of more than a single closed surface.

3 Beltrami's solution was later independently arrived at by
O,-jther [1912] and Finzi [1934] and has occasionally been
attributed to them. Actually, the tensorial version (1.2)
of Beltrami's solution seems to have made its first appear-
ance in Finzi's [1934] paper. The result (1.2) was also
rediscovered by Weber [1948], Morinaga and N~no [1950],
Schaefer [1953], and Ornstein [1954]. Related contributions,
as well as additional references, may be found in publications
by Kuzmin [1945], Krutkov [1249], Blokh (1950] Langhaar and
Stippes [1954], kr~ner [1954], Maiguerre [1955], Truesdell
(1959], and Sternberg (1960].
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Section 2 of the present paper contains certain

preliminary definitions and notational agreements. In Section 3

we include a concise version of Rieder's result and subsequently

use a minor variant of Gunther's argument to prove that every

(sufficiently smooth) totally self-equilibrated solution of (1.1)

admits the representation (1.2).

In Section 4 we first introduce the stress-function

solution of (1.1) given by

rkm = FkipSmJqciJ,pq + V2(*ksm+lIm, k) "'JJn } 1
4 (1.3)

We then prove that this solution is complete in the sense that

every (not necessarily totally self-equilibrated) solution of

(1.1) a be represented in the form (1.3). It follows as an

immediate corollary of this result that every solution of (1.1)

may be decomposed into the sum of a totally self-equilibrated

solution and a biharmonic solution.

2. Preliminary definitions. Equilibrated stress fields.

Throughout the paper a will denote a bounded region of

three-dimensional Euclidean space. The region Q will be either

open or closed. On the other hand R will always designate a

bounded open region whose closure is 1. We call It a regular

region if its boundary consists of a finite number of non-

intersecting closed regular surfaces, the latter term being used

in the sense of Kellogg [1929] (p.112).
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We write fCcN( () if and only if f is a real-valued

function defined and N times continuously differentiable on Q.

We say that k is an equilibrated stress field on R

if and only if -r C l(R) and

'cm•, m = 0 , *Tn = 7Vmk on R. (2.1)

We say that -%n is an equilibrated stress field on ] if and only

if -r is an equilibrated stress field on R and Tkm is continu-

ous on R.

Suppose T~ is an equilibrated stress field on 1 and

S a closed regular surface contained in Q. Further let Tk be

the surface traction of rmm on S defined at every regular point

of S through

Tk =I 'nm, (2.2)

nm being the unit outward normal of S. Then we call the vector

L(S) with components

Lk(S) =f TkdA (2.3)S( .S

the resultant force of rn on S and the 'vector _M(S) with

components

Mc(S) =e x T dA (2.4)
'k kij i J

the resultant moment (about the origin) of ckm on S.

An equilibrated stress field on 2 will be called

totally self-equilibrated if and only if its resultant force

and moment vanish on every closed regular surface contained In R.
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The following elementary result further clarifies the

difference between equilibrated and totally self-equilibrated

stress fields.

2.1 Theorem. Let R be a regular region whose boundary consists

of the closed surfaces Ba (a=l,2,...,N) and let rkm be an

equilibrated stress field on R. Then r n is totally self-

equilibrated if and only if its resultant force and moment

vanish on each B.

Proof. If km is totally self-equilibrated then, by definition,

L(%) = _M(Ba) = 0 (a=il,2,...,N). (2.5)

Conversely, (2.5), by virtue of (2.1), (2.3), (2.4), and the

divergence theorem, implies that rkm is totally self-equilibrated.

We now turn to a characterization of the type of region

on which there exist equilibrated stress fields which are not

totally self-equilibrated. Let S henceforth denote a closed

regular surface. We say that 0 is periphractic4 if and only if

it contains an S enclosing at least one point that does not

belong to 26. Thus a periphractic region has "holes". The

spherical shell R = {x: a < Ixi < b) is periphractic while the

open sphere R = [x: 12xI < b) is not periphractic. Also, we

note that a regular region is periphractic if and only if its

boundary consists of more than a single closed surface.

4 This term was apparently introduced by Maxwell [1873](Arts.18,
22).
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2.2 Theorem. There exist equilibrated stress fields on e which

are not totally self-eQuilibrated if and only if it is periphractic.

Proof. We show first that e is periphractic whenever there

exists an equilibrated stress field on P which is not totally

self-equilibrated. Indeed, this must be so since every equili-

brated stress field on 2 is totally self-equilibrated provided

A? is not periphractic, a fact which follows from (2.1) and

the divergence theorem. To prove the converse assertion assume

12 is periphractic, from which it follows that there exists an

S contained in Q enclosing a point which does not belong to E0

Choose the origin of the coordinates at this point and consider

the stress field
lx15  2 (-i9O...const.). (2.6)

Clearly T is equilibrated. Moreover, an elementary computation

establishes that

Lk(S) = J TkdA = (2.7)
k - 3 k / o (.

and consequently km is not totally self-equilibrated.

3. The Belbrami representation.

We consider next the Beltrami stress functions and

cite a well known fact, the truth of which may be confirmed by

direct substitution.
3.1 Theorem. Let pijCC3 (R), with y,, = cp3J and let

'km ' cip'mjq'Pij~pq on R. (3.1)
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Then • is an equilibrated stress field on R.

An equilibrated stress field ml on R which admits the

representation (3.1) in terms of a symmetric tensor field

Tij CC 3 (R) is said to admit a Beltrami representation on R. With

a view toward examining the completeness of this representation

we state and pive the following theorem, which is due to

Rieder [1960].

3.2 Theorem. Let r admit a Beltrami represontation on R.

Then Tkm is totally self-equilibrated.

Proof. Let & be an arbitrarily chosen closed regular surface

contained in R. Then (2.2), (2.3), (3.1) imply

Lk(S) If'anpmdA 2- J kps-Mjqpij,,pqn dA. (3.2)

Fix k and let v, =8 kip'PJpI so that (3.2) becomes

Lk(S) f - mqjVjqnmdA. (3.3)S

But it follows from a well-known corollary of 8tokes' theorem

that if viECI(R), then

femqjV J,q n mdA - 0 (3.4')

and hence Lk(S) - 0. Similarly, in view of the identity

Oijkelpq ' bjpbkq - bjqgp (3.5)

and since i ' TAPi' one has
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1i(S) f e jkij~mlnmdA f eijk'j k9p~mrqSr,pqflmdA

S

Thus Tkm is totally self-equilibrated and the proof is complete.

The following result is an immediate consequence of

Theorems 2.2 and 3.2.

3.3 Theorem. Let R be periphractic. Then there exist

equilibrated stress fields on R which do not admit a Beltrami

representation.

In fact the equilibrated stress field defined by (2.5)

on the spherical shell R = [x: a < xil < b) does not admit such

a representation. Thus the Beltrami solution, and hence also

the Maxwell and Morera solutions, are incomplete for periphractic

regions. This important limitation appears to have been largely

overlooked in the literature. It is natural to ask what class of

equilibrated stress fields does admit a Beltrami representation

regardless of whether or not the region is periphractic. The

next theorem answers this question.

3.4 Theorem. (Completeness of the Beltrami representation).

Let A be a regullar region whose boundary consists of the closed

surfaces Ba (a=l,2,...,N) and suppose each Ba is three times

continuously differentiable. Let k have the following

properties:
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(a) C2 T mC3C(R);

(b) -m is a totally self-equilibrated stress field

on

Then -n admits a Beltrami representation on R.

By virtue of Theorem 2.1, the hypothesis (b) may be

replaced by the seemingly weaker assumption that •km is an

equilibrated stress field on R whose resultant force and moment

vanish on each B. . For the special case N=1 the region IT is

not periphractic and thus, according to Theorem 2.2, the hypo-

thesis that Tkn is totally self-equilibrated may be replaced by

the requirement that Tkm is merely equilibrated. 5

A proof of Theorem 3.4 may be based on the theorem of

the vector potential. Indeed, Theorem 3.4 may be regarded as

a tensorial counterpart of the latter theorem, which we now cite.

3.5 Theorem. (Existence of a vector potential.) Let ' and Ba

meet the same hypotheses as in Theorem 3.4. Let v. have the

following properties:

(a) ve C2 (2) , vic C03 (R);

(b) f vinidA = 0 for every closed regular surface

S contained in If.

Then there exist wiC C3 (R) such that

vi = eijk'kj on R. (3.7)

A proof of this theorem is given by Lichtenstein (1929](pp.lOl-106).

5 The completeness pr.oofs given by Morinaga and NAno (1950]
Oristein (1954], Giinther (1954], anwd Dorn and Schild 13959J
are, in fact, valid only for N=1 since in both of these
investigations the restriction that T be totally self-
equilibrated is omitted. (See Theore;m3.3.)
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Proof of Theorem 3.4. The added restriction that Tkm is totally
t1

self-equilibrated allows us to use Gunther's (1954] completeness

proof in the present circumstances. In order to render the

present paper sensibly self-contained we include the following
I'

version of Gunther's argument.

Define Bijk, on R through

B . (3.8)

Then (3.5), (3.8), and the second of (2.1) imply
1

" "V ' I 6imnrijkBmcn " (3.9)

and

Bijk kiJ - Bkji BikJ Bjik (3.10)

Since k is a totally self-equilibrated stress field

f lnjdA = 0 ,f! (EiJkxjrkm)nmdA = 0 (3.1)
f3 injAO S

for every closed regular surface S contained in R. Thus and by

Theorem 3.5 there exist bi ZnC 3 (R), c iC C3 (R) such that

"Ir ffi "Jpqbiq,p e ij1j'rkm "i= mpeiq,p (3.12)

From (3.5), (3.9), (3.10), (3.12) follows

Bijkj = 6pji(bpk,i-bpL,k) XlcmjlBjilk = 2emjaciej (3.13)

Now define

D - pjkbp- D (3.1b)
ijk p2 p ikj (.4
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Then the first of (3.13) becomes

Bijkl = 2[Dkja,i-Diaj,k]. (3.15)

Further, from the second of (3.13), (3.14), (3.15),

9mjj[cij,j-2(XpDjip),j + 2D'ij] = 0. (3.16)

Accordingly the tensor multiplying emJl is skew symmetric with

respect to J and I and hence

(c•-2x Dgip).*j - (ca-2x-pDjip).A = 2(Djij-Djij). (3.17)

Next define

Fil = cil - 2xpDip (3.18)

and conclude from (3.17) that

Filj - Fij, = 2(Djir-Djij). (3.19)

Thus, and by (3.14),

V(im),k - (km),i + [kJLm" -" 2 Dmk" (3.20)

Consequently, (3.15) implies

Bijk = -F(kj),2i - F(Ai),kj + F(S),ij +F(iJ),k (3.21)

Finally, let Jq FMIW). It is clear from (3.14), (3.18), and

the smoothness of bij, Cij that TiJC C3(R). Moreover

and (3.9), (3.21), imply (3.1). This completes the proof.
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4. A generalization of the Beltram represeentation.

In this section we establish a solution of (2.1) in

terms of stress functions which is complete even if Tkm is not

totally self-equilibrated and regardless of whether or not the

region is periphractic.

A function fE C4(R) that satisfies V 4f = 0 on R will be

called biharmonic on R. The next theorem, which is readily

verified by substitution, supplies a solution of (1.1) in terms

of a biharmonic vector field.

4.1 Theorem. Let *, be biharmonic on R and let

S= V2 (*k,m+iIm,k) - "J,Jkm on R. (4.1)

Then rkm is an equilibrated stress field on R.

The solution (4.l) is evidently incomplete since it

implies that km is biharmonic. Now consider the stress field

defined by

Tkm = SjpEmjqq, ij,pq + V2 (*1k,m+$*mk) - *aaIkx on R (4.2)

where

S= TJi ' V4*i = G on R (4.3)

By Theorems 3.1 and 4.1 r km is an equilibrated stress field

on R. The representation (4.2) of an equilibrated stress field

Skmn in terms of a symmetric tensor field TijE C3 (R) and a bi-

harmonic vector field $i will be called a generalized Beltrami

representation on R.
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4.2 Theorem. (Completeness of the generalized Beltrami repre-
sentation.) Let ]f be an integrable region. Let rkm be an

equilibrated stress field on ]1 and suppose 1kme C3 (R). Then

Skm admits a generalized Beltrami, representation on R.

The following trivial lemma will facilitate the proof

of Theorem 4.2.

4.3 Lemma. Let R be integrable and let fC C°(]o), r•c N(R),

with N > 2. Then the equation

V4g = f on R (4.4)

has a solution gC CN+2(R).

Proof. Define p and g on T through
p(_x) 1 l p((•)

.- 1 D AU •, •(_) - - j_ dV_ (45.)
R R

Then 6 PccN+I(R), gC CN 2 (R) and V2 p - f, V2 g - p on R. Thus

g is a solution of (4.4).

Proof of Theorem 4.2. By hypothesis and Lemma 4.3 there exists

functions fij oC5 (R), with fiJ = fi., such that

V~rii =•lj on R. (4.6)

Further, one has the identity

iV fj ' 'ipkJsA'pqr stufqt,rukI # Li(f ppjA.pjpi) -p

(4.7)

as is readily verified by expanding the first term on the right

hand. side with the aid of (3.5). Now define

b See, for example, Courant [1962](p.246).
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yps= £pqrBstufqt,ru ' Si - fip,p on R (4.8)

so that Ij•C_ 3 (R), with J= TA, and *iC 4 (R). Also, (4.6),

(4.7), (4.8) imply (4.2). Thus the proof is complete since
4V4 0 on R according to (4.2) and the first of (2.1).

It is of interest to note that the smoothness hypotheses

which are sufficient to prove the completeness of the generalized

Beltrami representation (Theorem 4.2) are much less stringent

than those used to prove the completeness of the Beltrami repre-

sentation (Theorem 3.4).

The next theorem is an immediate consequence of

Theorems 4.2, 3.1, 3.2, 4.1.

4.4 Theorem. (Decomposition of an equilibrated stress field).

Let ] be an Integrable region. Let %m be an equilibrated stress

field on R and suppose kc3(R). Then rkm admits the decomposi-

tion
tk o___ znon R

where Tlý is a totally self-equilibrated stress field on R, while

Tkm is an equilibrated stress field which is biharmonic on R.

The theorems proved in this paper are strictly

analogous to certain results in vector analysis. It follows

from Helmholtz's theorem that every sufficiently smooth vector

field vi which is defined on a suitably regular region R and

meets

Vi,i - 0 on R, (4.10)
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admits the representation

vi. = e ~ +/0/ v2 bk= 0 on R. (4.',1)v i =•jkk,j +'P

Further, it is a direct consequence of (4.11) that vi may be

written in the form

v= v + v on R, (4.12)

where the total flux of vi across every closed surface S in R

vanishes, i.e.

f vinidA = 0 , (4-.13)

I,

whereas vi is harmonic. The stress equations of equilibrium

are an analog of (4.10), the generalized Beltrami representation

is a counterpart of (4.11), and the decomposition (4.9) is

analogous to (4.12). As is apparent from Theorem 3.5, the

harmonic potential '29- in (4.11) may be set equal to zero (with-

out loss of completeness) provided the total flux of vi across

every closed surface in R vanishes. Analogously, we conclude

from Theorem 3.4 that the biharmonic stress function *k in (4.2)

may be set equal to zero whenever the resultant force and moment

of Ukm vanishes on every closed surface in R.

Consider finally the inhomogeneous stress equations of

equilibrium

• rkm,m+ Fk= - 0 km - rmk on R (4.14)

in which Fk denotes the body force density. Since we have

already established a complete solution of (4.14) with Fk - o,
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the case in which the body forces fail to vanish is disposed of

if we exhibit a particular solution of (4.14). Such a solution

is given by (4.1) provided ik satisfies

v4ý k = - Pk on R (4.15)

A solution of (4.15), in turn, is easily exhibited with the aid

of an iterated Newtonian potential such as the one used in the

proof of Lemma 4.3.

Acknowledgement. The author wishes to express his appreciation
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many helpful criticisms of the manuscript.
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